

Solving Inequalities

AGENDA:

- Objective- Students can solve linear inequalities in one variable, including equations with coefficients represented by letters.
- Define Inequalities
- One & Two Step
 Inequalities

— Martin Luther King Jr.

Students can identify	symbolic representation of inequalities.					
Inequality	Inequality Symbols					
Less Than <	Greater Than >					
Less Than or Equal Too ≤	Greater Than or Equal Too ≥					
37 8_	5 16					
4 5	92					

RECALL:					
ONE STEP	_TWO STEP_				
x + 4 > 3	-5x - 13 ≤ 2				

RECALL:						
ONE STEP	_TWO STEP_	_DISTRIBUTIVE_				
$\underline{x} \ge 8$	-2x + 12 < 4	2x - 2(x - 1) < 5				

- Students can explain each step in solving an inequality as following the equality of numbers asserted in the previous step, starting from the assumption that the original inequality has a solution.
- Students can write solutions to inequalities in interval notation.

10	rd Prob	olems Solv	ved by l	nequaliti
req	uently, word prob	lems involve translati	ng an English sente	nce into an inequality
or e	xample, Tony can	spend <mark>at most \$25</mark> or	n a football.	
[.] his r	means that he mu	st spend \$25 or less .		
here	efore, at most is t	ranslated as <u><</u> .		
anet	needs at least a G	0 average for all her	subjects to quality	for the honor roll
anet 'his r 'here	needs <u>at least a S</u> neans that she mu efore, at least is t	20 average for all her ust have an average o ranslated as ≥,	subjects to quality of 90 or greater .	for the honor roll.
anet ⁻ his r - here	needs <u>at least a 9</u> means that she mu efore, at least is t	20 average for all her ust have an average o ranslated as ≥.	subjects to quality of 90 or greater . <u><</u>	for the honor roll.

	Sti	idents can solve word p	problems that lead to in	requalítíes.		
Example One Jamal is paid \$150 a week plus a commission of \$40 on each stereo he sells. How many must he sell to make at least \$350 a week?						
STRATEGY Let x	= the number h e: salary plus	e can sell.	is at least	350		
	salary plus		is at least	350		
	salary plus		is at least	350		
	Solve the tra	nslated inequality				

Graphing the iequality $y < 2x + 3$ Graphing the inequality $y > 2x + 3$			
Graphing the inequality $y \le 2x + 3$	Graphing the inequality $y \ge 2x + 3$		

Inequality	Line	Shade
Symbol >	Dotted	Un
<	Dotted	Down
2	Solid	Up
\leq	Solid	Down

December 12, 2014

December 12, 2014

AGENDA:

- Do Now
- Objectives
- Graphing Linear Inequalities Practice: Finish Worksheet from yesterday.

AGENDA:

- Do Now
- Homework Questions
- Writing linear equations

REMINDERS:

Períod:
Algebra Common Core DI Lesson on Systems of Inequalities Read all of the directions carefully. With your partner, underline all key words. Markers are available for you to use. Work together to determine the solutions. Refer to your packet if/ when needed. Step 1: Rip off the sheet of graph paper at the end of this packet.
Step 1: Rip off the sheet of graph paper at the end of this packet.
Step 1: Rip off the sheet of graph paper at the end of this packet.
Write the
names of your group members on the graph paper.
<u>Step 2</u> : Solve this linear inequality for y. $y + 2x \ge 4$
Step 3: Identify the slope of this linear inequality. $m = $
<u>Step 4:</u> Identify the y- intercept of this inequality. b =
Step 5: Determine if this "line" would be solid or dotted
Step 6: Determine if you will shade "up" or "down".
<u>Step 7:</u> Graph this linear inequality on your graph paper using one of your markers. Be sure to shade appropriately! Label you inequality.

<u>Step 8</u> : Solve this linear inequality for y. $y + 1 > x$	
<u>Step 9:</u> Identify the slope of this linear inequality. $m = $	
<u>Step 10:</u> Identify the y- intercept of this inequality. b =	
Step 11: Determine if this "line" would be solid or dotted	
Step 12: Determine if you will shade "up" or "down".	
Step 13: Graph this linear inequality on the same graph paper using your other marker. Be sure to shade appropriately! Label you inequality.	
Step 14: Put an "S" where the shadings overlap.	
<u>Step 15:</u> Name 3 points that are solutions to your system of inequalities. HINT- name 3 points that fall in your "S".	

Nov 25-10:43 AM

December 12, 2014

Nov 25-10:43 AM

Nov 25-10:43 AM

December 12, 2014

 7. Charlene makes \$10 per hour babysitting and \$5 per hour gardening. She wants to make at least \$80 a week, but can work no more than 12 hours a week. a. Write a system of linear equations.
b. Graph the solutions of the system.
c. Describe all the possible combinations of hours that Charlene could work at each job.

d. List two possible combinations.

Nov 25-10:43 AM

	GENDA:
•	OBJECTIVE:
	> Students can determine where a function is increasing and decreasing.
	> Students can determine the range given a domain of a
	piecewise function.
•	
	The minute you think of giving up, think of the reason why you held on so long.

Nov 21-9:43 AM

Increasi	ng/ Decreas	ing Functions			
A function is increasing when the slope is.A function is decreasing when the slope is.A function is constant when the slope is.					
In General, If the slope is					
	Positive Negative Zero Undefined	Line increases Line decreases Horizontal Line Vertical Line			

 Increasing/ Decreasing Functions
We will use INTERVAL NOTATION or SET. NOTATION when we write the intervals of increase and decrease. Intervals of increase or decreae are always <u>CLOSED</u> !!!
 Where is f(x) increasing? Where is f(x) decreasing? Where is f(x) decreasing?
 • Where is f(x) Constant?

Nov 21-9:43 AM

Nov 21-9:43 AM

Nov 21-9:43 AM

Nov 21-9:43 AM

Nov 21-9:43 AM

Given $f(x) = 3x - 1$ and $g(x) = -2 + x^2$, evaluate the
 following:
1. f(2)
2. g(2)
-3. g(-1) 1 C 2 -
<u>4. f(-5)</u> ?
5. g(-3) + -

		+/-=
	GENDA:	
•	DBJECTIVE:	
	 Students can determine where a function is increasing and decreasing. 	
-	Students can determine the range given a domain of a piecewise function. REMINDERS:	"Do not Give Up, the BEGINNING is always the Hardest Keep Moving
		FORWARD!!"
		Riza Budiman
		Monday - Aug 6, 2012(3:39 am)

Nov 21-2:33 PM

Nov 21-9:43 AM

Nov 21-9:43 AM

AGENDA:

REMINDERS:

Math may not teach me how to add love or subtract hate but it gives me hopes that every problem has a solution. reativesnumber1.umbtr.