Agenda: Objectives: Students can define monomial, binomial and trinomial. Students will be able to multiply monomials and find the degree of a term. Reminders: Reminders: Dec 12-7:52 AM Dec 12-7:52 AM Dec 12-7:52 AM May 14-7:59 AM Dec 12-7:52 AM Feb 3-12:08 PM Dec 12-7:52 AM Dec 12-7:52 AM Dec 12-7:52 AM Dec 12-7:52 AM | Steps for | | |---------------|--| | Div | iding Polynomials: | | 1ALL_terms | the term in the denominator into of the numerator. | | 2. Divide coe | fficients | | 3 | exponents with the same base: | Dec 12-7:52 AM For the remainder of the class you are your on the practice problems attached for Multiplying Polynomials. I WILL BE GRADING RANDOM QUESTIONS ON THIS SHEET SO BE SURE NOT TO WASTE CLASS TIME!! Dec 12-7:52 AM Dec 12-7:52 AM | Agendo | 10 | |--|--| | Students can determ
rule for a 0 exponen
negative exponents. | | | Reminders: | "Leaders aren't born, they are made. And
they are made just like anything else,
through hard work. And that's the price
we'll have to pay to achieve that goal, or
any goal." - Vince Lombardi | Dec 12-7:52 AM Dec 12-7:52 AM Dec 12-7:52 AM | • 0 and | Negative Exponents | |---------|--| | * | * What happens in the value column going | | t | op to bottom? | | | • | | | | | | | | | | | | | | | | | * | * Based on the table do you think all negative | | | exponents will be fractions? Why or why not? | | | exponents will be fractions: Why or why hot: | Doc 40 7.50 AM | Dec 12-7:52 AM | ** What is the exponent when the value is one? Do you think any term raised to that | |--| | one? Do you think any term raised to that | | | | | | power will be one? Why or why not? Give an | | example to prove your response. | | | | | | | | | | ** Based on your answers about the table write | | a (1) rule about zero exponents and a (2) rule | | about negative exponents. | | | | | | | | | | | | | Dec 12-7:52 AM Dec 12-7:52 AM Dec 12-9:24 AM Dec 12-7:52 AM | Objectives: Students can combine terms (add polynomia write their answers in form. | e like
ls) and | |---|---| | Reminders: | Success is no accident. It is hard work, perseverance, learning, studying, sacrifice and Most of all, love of what you are doing. -Pele | | | | Dec 12-7:52 AM May 3-12:21 PM | Adding Polynomials | | |---|---| | | | | A polynomial in st
exponents (highes | randard form is written in descending order of it first). | | Re-write each of | the following in standard form: | | 1. 4x - 9x ² + 3 | Standard form: | | 2. 6 - X + 4X ³ | Standard form: | | 3. $X^4 - X^2 + X + X^3$ | Standard form: | May 14-11:12 AM Dec 12-7:52 AM May 3-12:21 PM **Warm Up** Let's practice the Distributive Property: 1. 3(X + 5Y)2. -2(3X + 1) 4. $-2X^2(y^2 + 5)$ 3. 4×(5-7Y) Dec 12-7:52 AM | | handing Dalamanials | |------|-------------------------------------| | • Su | btracting Polynomials | | | | | | Simplify each of the following. | | | British addition of a following. | | L. | | | 1. | $(2x^2 - 3x + 4) - (5x^2 + 7x - 9)$ | 2. | $(-x^2 - 5x - 6) - (x^2 + x - 1)$ | = | | Dec 12-7:52 AM Warm Up Multiply. Write your answer in standard form. What is the degree of your polynomial? 3x²(3x² - 4x + 7) Dec 17-8:02 AM Dec 12-7:52 AM | Agenda: Objectives: | | |---|--| | Students can multiply polynomials and write their answers in standard form. Reminders: | GUCCEGG ISN'T HOW FAR YOU GOT, BUT THE DISTANCE YOU TRAVELED FROM WHERE YOU STARTEDProverb | | Multiplyi | ng Polynomials | |-------------------------------|---| | | We already know how tomultiply a monomial by a | | D.C | olynomial. Let's try a binomial times a binomial. There | | pc | · · · · · · · · · · · · · · · · · · · | | | are several methods on how we can do this. | | | | | ME | THOD 1: DOUBLE DISTRIBUTE | | | | | | (y 2)/y E) = y/y E) 2/y E) | | | (x + 3)(x - 5) = x(x - 5) + 3(x - 5) | Multiplying Polynomials | | | |--|--------------------------------------|--| | We already know how tomultiply a monomial by a | | | | | | | | polynomial. Let's try a binom | <u>iial times a binomial</u> . There | | | are several methods or | n how we can do this. | | | | | | | METHOD 2: PUN | NET COLLABO | | | METHUDZ: PUN | NEI SZUARE | | | | x +3 | | | (L O)(E) | X 10 | | | (x + 3)(x - 5) = | | | | X | | | | | | | | -5 | | | | -3 | Dec 12-7:52 AM Dec 12-7:52 AM | Multiplying Polynomials | | |--|----------------------------| | Multiply each set of binomials. W
form. Use any method of multipl
there for you if you prefer that m | ying. The punnet square is | | 1. (x + 2) (x - 4) | | | 2. (x - 7) (x + 1) | | | 3. (4 - x) (5 - x) | | | | | | | | | | | | • Mu | ultiplying Polynomials | |----------|-------------------------------------| | | | | | Class Work on Multiplying Binomials | | | Class Work on Walapiying Billomale | | | | | | | | | | | \vdash | Dec 12-7:52 AM 17-8:18 AM Dec 17-8:18 AM