

Agenda:

Objectives:

Students can define monomial, binomial and trinomial.

Students will be able to multiply monomials and find the degree of a term.

Reminders:

Reminders:

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM

May 14-7:59 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Feb 3-12:08 PM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Steps for	
Div	iding Polynomials:
1ALL_terms	the term in the denominator into of the numerator.
2. Divide coe	fficients
3	exponents with the same base:

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

For the remainder of the class you are your on the practice problems attached for Multiplying Polynomials.

I WILL BE GRADING RANDOM QUESTIONS ON THIS SHEET SO BE SURE NOT TO WASTE CLASS TIME!!

Dec 12-7:52 AM Dec 12-7:52 AM

Agendo	10
Students can determ rule for a 0 exponen negative exponents.	
Reminders:	"Leaders aren't born, they are made. And they are made just like anything else, through hard work. And that's the price we'll have to pay to achieve that goal, or any goal." - Vince Lombardi

Dec 12-7:52 AM

Dec 12-7:52 AM

Dec 12-7:52 AM

• 0 and	Negative Exponents
*	* What happens in the value column going
t	op to bottom?
	•
*	* Based on the table do you think all negative
	exponents will be fractions? Why or why not?
	exponents will be fractions: Why or why hot:
	Doc 40 7.50 AM

Dec 12-7:52 AM

** What is the exponent when the value is one? Do you think any term raised to that
one? Do you think any term raised to that
power will be one? Why or why not? Give an
example to prove your response.
** Based on your answers about the table write
a (1) rule about zero exponents and a (2) rule
about negative exponents.

Dec 12-7:52 AM

Dec 12-7:52 AM

Dec 12-9:24 AM

Dec 12-7:52 AM

Objectives: Students can combine terms (add polynomia write their answers in form.	e like ls) and
Reminders:	Success is no accident. It is hard work, perseverance, learning, studying, sacrifice and Most of all, love of what you are doing. -Pele

Dec 12-7:52 AM

May 3-12:21 PM

Adding Polynomials	
A polynomial in st exponents (highes	randard form is written in descending order of it first).
Re-write each of	the following in standard form:
1. 4x - 9x ² + 3	Standard form:
2. 6 - X + 4X ³	Standard form:
3. $X^4 - X^2 + X + X^3$	Standard form:

May 14-11:12 AM

Dec 12-7:52 AM

May 3-12:21 PM

Warm Up Let's practice the Distributive Property: 1. 3(X + 5Y)2. -2(3X + 1) 4. $-2X^2(y^2 + 5)$ 3. 4×(5-7Y) Dec 12-7:52 AM

Dec 12-7:52 AM

	handing Dalamanials
• Su	btracting Polynomials
	Simplify each of the following.
	British addition of a following.
L.	
1.	$(2x^2 - 3x + 4) - (5x^2 + 7x - 9)$
2.	$(-x^2 - 5x - 6) - (x^2 + x - 1)$
=	

Dec 12-7:52 AM

Warm Up

Multiply. Write your answer in standard form.

What is the degree of your polynomial?

3x²(3x² - 4x + 7)

Dec 17-8:02 AM Dec 12-7:52 AM

Agenda: Objectives:	
Students can multiply polynomials and write their answers in standard form. Reminders:	GUCCEGG ISN'T HOW FAR YOU GOT, BUT THE DISTANCE YOU TRAVELED FROM WHERE YOU STARTEDProverb

 Multiplyi 	ng Polynomials
	We already know how tomultiply a monomial by a
D.C	olynomial. Let's try a binomial times a binomial. There
pc	· · · · · · · · · · · · · · · · · · ·
	are several methods on how we can do this.
ME	THOD 1: DOUBLE DISTRIBUTE
	(y 2)/y E) = y/y E) 2/y E)
	(x + 3)(x - 5) = x(x - 5) + 3(x - 5)

Multiplying Polynomials		
We already know how tomultiply a monomial by a		
polynomial. Let's try a binom	<u>iial times a binomial</u> . There	
are several methods or	n how we can do this.	
METHOD 2: PUN	NET COLLABO	
METHUDZ: PUN	NEI SZUARE	
	x +3	
(L O)(E)	X 10	
(x + 3)(x - 5) =		
X		
-5		
-3		

Dec 12-7:52 AM Dec 12-7:52 AM

Multiplying Polynomials	
Multiply each set of binomials. W form. Use any method of multipl there for you if you prefer that m	ying. The punnet square is
1. (x + 2) (x - 4)	
2. (x - 7) (x + 1)	
3. (4 - x) (5 - x)	

• Mu	ultiplying Polynomials
	Class Work on Multiplying Binomials
	Class Work on Walapiying Billomale
\vdash	

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 12-7:52 AM

Dec 12-7:52 AM Dec 17-8:18 AM

Dec 17-8:18 AM